If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-45x-16=0
a = 5; b = -45; c = -16;
Δ = b2-4ac
Δ = -452-4·5·(-16)
Δ = 2345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-\sqrt{2345}}{2*5}=\frac{45-\sqrt{2345}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+\sqrt{2345}}{2*5}=\frac{45+\sqrt{2345}}{10} $
| 10x-60=-10 | | 5z=7z-2z | | 0=-16x^2+80x+0.1 | | 4x-7+2=2(3-3 | | -x+4(1+5)=156 | | 4x+12=3x2+3x | | p4-3=-5 | | y=-3.01-5.56 | | 24=r+11 | | 3/2+3/4a=1/2 | | 2(b+8)-9)=9 | | 18g=3(5g-2) | | -4w-26=82 | | 12+t3=17 | | |w|-15=-7 | | (7/5)=(x/3) | | 0.12x=2.4 | | m+4m=m | | 7x-46=82-3x | | 8g=15g-2 | | -2(-2-3x)=76 | | 7x-4=41+2x | | 6(6-6x)=36 | | 15n=12/25 | | 5(7-4x)=135 | | 7+4x=4+7x | | 7x+17=5(205-33x) | | 8x+3+10x=2(x-2)+3 | | (3x+4)(2x-1)=112 | | y=-0.31+1.8 | | -6(1x+9)=-126 | | -8x+15x-30x+51x=-53x-31x+172 |